Approche thermodynamique de l'effet de serre

par Guillaume Legros et Céline Morin Maîtres de Conférences à l'Université Paris VI

> Laboratoire de Mécanique Physique Université Pierre et Marie Curie – Paris6 email: glegros@ccr.jussieu.fr

tél: 01 30 85 48 84

Introduction

Définition

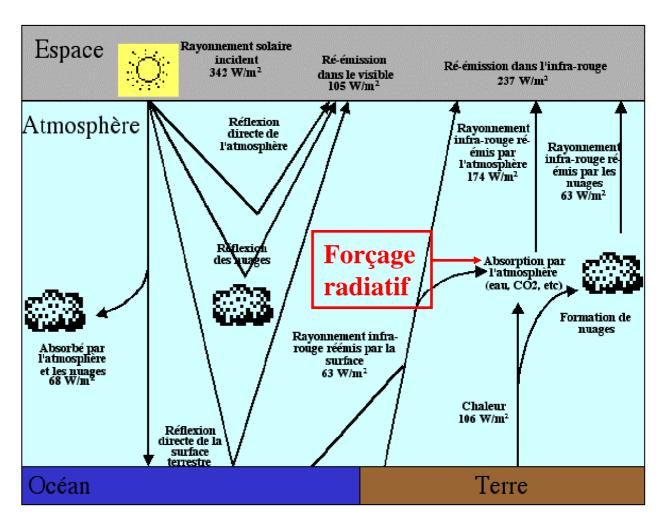
Bilan énergétique de la Terre

Effet de serre:

phénomène de rétention thermique d'un local nonventilé, dû à une transparence sélective des matériaux de l'enveloppe en fonction des diverses longueurs d'ondes du rayonnement

Forçage radiatif

Perspectives


Introduction

Bilan énergétique de la Terre

Forçage radiatif

Perspectives

Définition

Absorbé par la surface 169 W/m²

Introduction

Influence de l'atmosphère

Bilan énergétique de la Terre

Forçage radiatif

Perspectives

Effet de serre:

phénomène de rétention thermique d'un local nonventilé, dû à une transparence sélective des matériaux de l'enveloppe en fonction des diverses longueurs d'ondes du rayonnement.

Modèle simple:

A l'équilibre système + enveloppe:

 $Q_{ext,e} = Q_{e,ext}$

Equilibre du système:

 $Q_{s,e} = Q_{e,s}$

Introduction

Influence de l'atmosphère

Bilan énergétique de la Terre

Forçage radiatif

Perspectives

Effet de serre:

phénomène de rétention thermique d'un local nonventilé, dû à une transparence sélective des matériaux de l'enveloppe en fonction des diverses longueurs d'ondes du rayonnement.

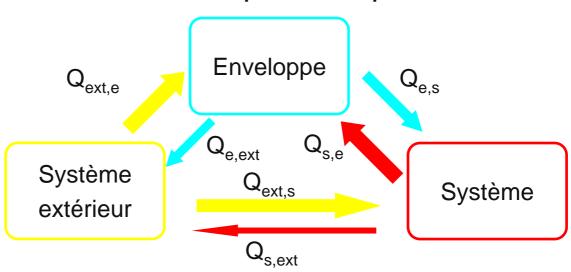
Modèle simple:

Avec ce modèle, le déplacement d'équilibre du système ne dépend que de l'irradiation solaire $(Q_{ext,e})$.

Introduction

Influence de l'atmosphère

Bilan énergétique de la Terre


Forçage radiatif

Perspectives

Effet de serre: phénomène de rétention thermique d'un local nonventilé, dû à une transparence sélective des matériaux de l'enveloppe en fonction des diverses

Modèle plus complexe:

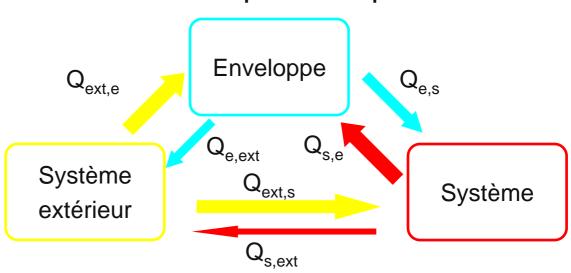
longueurs d'ondes du rayonnement.

A l'équilibre système + enveloppe: $Q_{ext,e} + Q_{ext,s} = Q_{e,ext} + Q_{s,ext}$

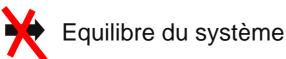
Introduction

Influence de l'atmosphère

Bilan énergétique de la Terre


Forçage radiatif

Perspectives


Effet de serre: phénomène de rétention thermique d'un local nonventilé, dû à une transparence sélective des matériaux de l'enveloppe en fonction des diverses

Modèle plus complexe:

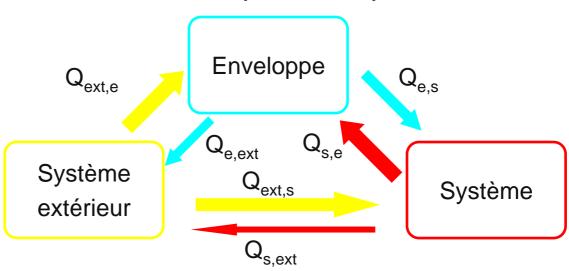
longueurs d'ondes du rayonnement.

A l'équilibre système + enveloppe: $Q_{ext,e} + Q_{ext,s} = Q_{e,ext} + Q_{s,ext}$

Introduction

<u>Influence de l'atmosphère</u>

Bilan énergétique de la Terre


Forçage radiatif

Perspectives

Effet de serre:

phénomène de rétention thermique d'un local nonventilé, dû à une transparence sélective des matériaux de l'enveloppe en fonction des diverses longueurs d'ondes du rayonnement.

Modèle plus complexe:

Avec ce modèle, le déplacement d'équilibre du système ne dépend plus uniquement de l'irradiation solaire (Q_{ext,e}+Q_{ext,s}).

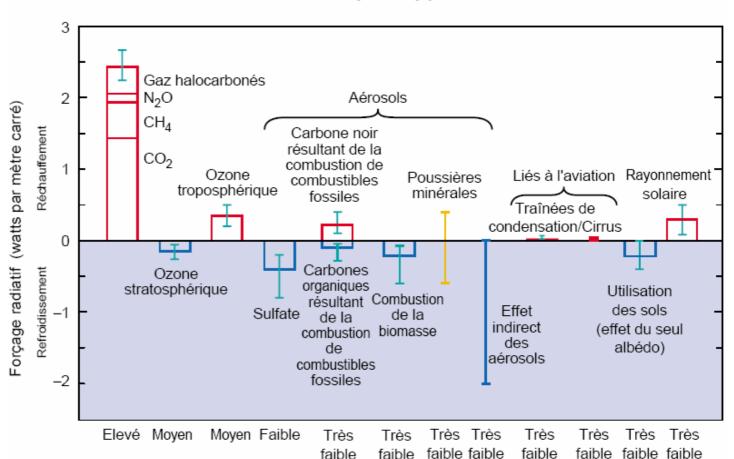
Introduction

Bilan énergétique de la Terre

Forçage radiatif

Perspectives

Introduction


Bilan énergétique de la Terre

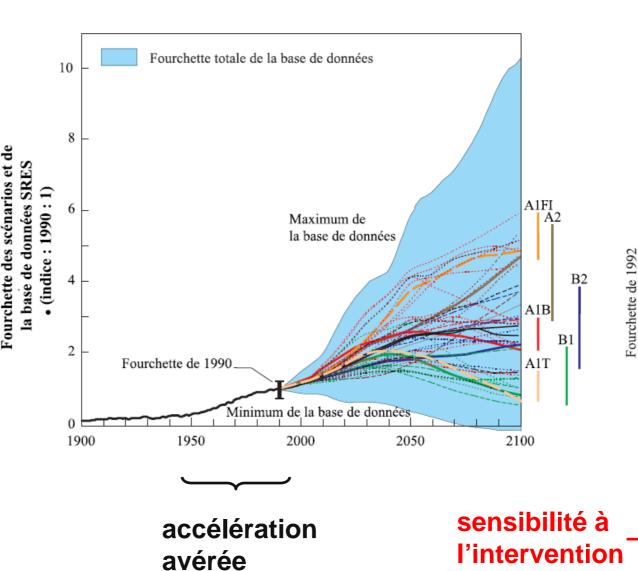
Forçage radiatif

Perspectives

Situation actuelle

Forçage radiatif moyen global du système climatique en l'an 2000 par rapport à 1750

Introduction


Bilan énergétique de la Terre

Emissions mondiales de dioxyde de carbone

Forçage radiatif

Perspectives

Dynamique

Introduction

Définitions

Bilan énergétique de la Terre

Régime permanent

Régime transitoire

Système:

Terre

système fermé

1^{er} principe de la thermodynamique pour un système fermé:

Forçage radiatif

 $\Delta E = \mathbf{W} + Q$

Perspectives

où ΔE est la variation totale d'énergie du système

W l'énergie échangée sous forme de travail avec l'extérieur

Q l'énergie échangée sous forme de chaleur avec l'extérieur

N.B.: on compte ici positivement l'énergie reçue par la Terre et négativement l'énergie perdue.

Introduction

Définitions

Bilan énergétique de la Terre

Système:

Terre

système fermé

Régime permanent Régime transitoire

1er principe de la thermodynamique pour un système fermé:

Forçage radiatif

$$\Delta E = \mathbf{W} + Q$$

Perspectives

La variation ΔE est le fait d'une énergie reçue E_S par la Terre et d'une énergie émise, en grande partie dans l'infra-rouge, E_{IR} :

$$\Delta E = E_S - E_{IR}$$

Introduction

Bilan en régime permanent

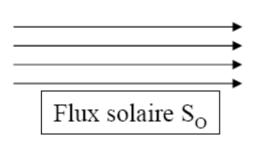
Bilan énergétique de la Terre

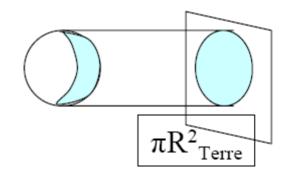
Régime permanent

Régime transitoire

Régime permanent

$$E_S = E_{IR}$$


D'où


$$\Delta E = 0$$

Forçage radiatif

Estimation de E_S: E_S est l'énergie reçue par la Terre, principalement depuis le Soleil.

Perspectives

$$E_S = \pi R^2 (1 - \alpha) \Phi_S$$

avec α : albedo (i.e. réflectivité totale hémisphérique)

R : rayon moyen de la Terre

 Φ_{S} : flux surfacique solaire reçu par la Terre

Introduction

Bilan en régime permanent

Bilan énergétique de la Terre

Régime permanent

Régime transitoire

Régime permanent

$$E_S = E_{IR}$$

D'où

$$\Delta E = 0$$

Forçage radiatif

Estimation de E_{IR}: E_{IR} est l'énergie émise par la Terre vers l'extérieur

Perspectives

D'où
$$E_{IR} = 4\pi R^2 (1-\alpha) \Phi_{IR}$$

avec α : albedo (i.e. réflectivité totale hémisphérique)

R : rayon moyen de la Terre

 Φ_{IR} : flux surfacique émis par la Terre

Introduction

Bilan en régime permanent

Bilan énergétique de la Terre

Régime permanent

$$E_S = E_{IR}$$

Régime permanent Régime transitoire

D'où

$$\Delta E = 0$$

Forçage radiatif

En régime permanent:

Perspectives

$$4\pi R^2(1-\alpha)\Phi_{IR} = \pi R^2(1-\alpha)\Phi_{S}$$

soit

$$\Phi_{IR} = \frac{1-\alpha}{4}\Phi_{S}$$

Introduction

Bilan en régime permanent

Bilan énergétique de la Terre

Régime transitoire

Régime permanent

 $E_{\rm S} = E_{\rm IR}$

Régime permanent

D'où

 $\Delta E = 0$

Forçage radiatif

En régime permanent:

Perspectives

$$\Phi_{IR} = \frac{1-\alpha}{4}\Phi_{S}$$

Or le Tere peut être assimilé à un corps opaque:

$$\Phi_{IR} = \varepsilon \sigma T^4$$

ε est l'émissivité totale hémisphérique de la Terre ΟÙ σ la constante de Planck

Introduction

Bilan en régime permanent

Bilan énergétique de la Terre

Régime transitoire

Régime permanent

 $E_S = E_{IR}$

Régime permanent

D'où

 $\Delta E = 0$

Forçage radiatif

En régime permanent:

Perspectives

$$T_0 = \sqrt[4]{\frac{1-\alpha}{4}\Phi_S}$$

$$\varepsilon \sigma$$

où T₀ est la température d'équilibre de la Terre.

Introduction

Bilan en régime permanent

Bilan énergétique de la Terre

Régime permanent

$$E_S = E_{IR}$$

Régime permanent Régime transitoire

D'où

$$\Delta E = 0$$

Forçage radiatif

Perspectives

En régime permanent:

$$T_0 = \sqrt[4]{\frac{1-\alpha}{4}\Phi_S}$$

$$\varepsilon \sigma$$

Ordres de grandeur: pour $\varepsilon = 0$ (i.e. sans effet de serre)

$$\Phi_S \approx 1400 \, W.m^{-2}$$

$$\alpha \approx 0.3$$

$$T_0 \approx 257 \ K = -16 \ ^{\circ}C$$

Introduction

Bilan en régime permanent

Bilan énergétique de la Terre
Régime permanent
Régime transitoire

Ordres de grandeur: pour $\varepsilon = 0$ (i.e. sans effet de serre)

$$\Phi_S \approx 1400 \, W.m^{-2}$$

$$\alpha \approx 0.3$$

Forçage radiatif

Perspectives

$$T_0 \approx 257 \ K = -16 \ ^{\circ}C$$

à comparer à la température moyenne actuelle:

$$T_0^{r\'eelle} \approx +15 \, ^{\circ}C$$

Cette différence s'explique en grande partie du fait de l'effet de serre, que rend l'atmosphère semi-transparente $\implies \alpha_{atm} \neq 0$

D'où

$$\varepsilon^{r\'{e}elle} < 1$$

Introduction

Bilan en régime permanent

Bilan énergétique de la Terre Régime permanent Régime transitoire

Ordres de grandeur: pour $\Phi_S \approx 1400 \, W.m^{-2}$ $\alpha \approx 0.3$

Forçage radiatif

 $E_S = \pi R^2 (1-\alpha) \Phi_S \approx 86.10^6 Mtep/an$

Perspectives

à comparer avec les 10 000 Mtep/an d'énergie consommée à l'échelle mondiale

$$E_{consomm\acute{e}e} pprox rac{E_S}{8600} <<< E_S$$

Introduction

Bilan en régime transitoire

Bilan énergétique de la Terre

Régime permanent **Régime transitoire**

Forçage radiatif

Perspectives

Deux cas de figure possibles:

 Si l'énergie solaire incidente est supérieure à l'énergie IR émise:

$$\Delta E > 0$$

C'est apparemment le 2nd cas de figure que nous vivons actuellement: l'effet de serre tend à faire diminuer l'énergie émise dans l'IR.

Introduction

Bilan en régime transitoire

Bilan énergétique de la Terre Régime permanent

Régime transitoire

Forçage radiatif

Perspectives

Plus précisément:
$$\Delta E = \Delta E_P + \Delta E_C + \Delta U$$

Pour le système étudié, ΔE_{P} n'est pas affectée a priori par la diminution des émissions IR de la Terre.

$$\rightarrow$$
 $\Delta E \approx \Delta E_C + \Delta U$

L'augmentation d'énergie totale du fait de la diminution de l'énergie émise peut donc s'accompagner:

- d'une augmentation de l'énergie cinétique (vents, etc.)
- d'une augmentation de la chaleur sensible via l'augmentation de la température de la Terre ou de l'atmosphère
- d'une augmentation de l'énergie interne stockée (biomasse, etc.)
- d'une diminution de la masse de glace (fusion)

Introduction

Conclusion

Bilan énergétique de la Terre Régime permanent

Régime transitoire

L'effet de serre positif se traduit par une augmentation de l'énergie de notre planète.

Forçage radiatif

A une époque où la consommation d'énergiene cesse de croître, cette constatation est positive.

Perspectives

Pour autant, le défi à relever est que cette augmentation d'énergie ne se traduise pas par des effets néfastes à l'échelle planétaire (grandes catastrophes climatiques).

L'enjeu consiste à présent en la maîtrise de l'effet de serre afin de convertir l'apport d'énergie en énergie utile, de façon directe (énergie solaire, énergie éolienne) ou par stockage (biomasse).

Introduction

Forçage lié à l'effet de serre cumulé

Bilan énergétique de la Terre

<u>Définition</u>: le forçage radiatif *F* quantifie la diminution induite de l'énergie IR émise naturellement par la Terre.

Forçage radiatif positif négatif

$$E_{IR} = 4\pi R^2 (\Phi_{IR} - F)$$

Perspectives

N.B.: F est homogène à un flux surfacique

Si on établit de nouveau le bilan énergétique de la Terre en régime permanent, on obtient:

$$4\pi R^{2}(1-\alpha)(\Phi_{IR}-F)=\pi R^{2}(1-\alpha)\Phi_{S}$$

soit encore
$$\Phi_{IR} = \frac{1-\alpha}{4}\Phi_S + F$$

Introduction

Forçage lié à l'effet de serre cumulé

Bilan énergétique de la Terre

<u>Définition</u>: le forçage radiatif *F* quantifie la diminution induite de l'énergie IR émise naturellement par la Terre.

Forçage radiatif positif négatif

$$E_{IR} = 4\pi R^2 (\Phi_{IR} - F)$$

Perspectives

N.B.: F est homogène à un flux surfacique

Si on établit de nouveau le bilan énergétique de la Terre en régime permanent, on obtient:

$$4\pi R^{2}(1-\alpha)(\Phi_{IR}-F)=\pi R^{2}(1-\alpha)\Phi_{S}$$

soit encore
$$\Phi_{IR} = \varepsilon \sigma T_1^4 = \frac{1-\alpha}{4} \Phi_S + F$$

où T₁ est la nouvelle température d'équilibre de la Terre

Introduction

Forçage lié à l'effet de serre cumulé

Bilan énergétique de la Terre

En présence de forçage radiatif:

Forçage radiatif positif négatif

 $\Phi_{IR} = \varepsilon \sigma T_1^4 = \frac{1-\alpha}{4} \Phi_S + F$

Perspectives

En l'absence de forçage radiatif:

$$\Phi_{IR} = \varepsilon \sigma T_0^4 = \frac{1-\alpha}{4} \Phi_S$$

Ainsi pour un forçage radiatif positif (F>0): $T_1 > T_0$

Introduction

Forçage lié à l'effet de serre cumulé

la Terre

Forçage radiatif positif négatif

Perspectives

Bilan énergétique de En présence de forçage radiatif:

$$\Phi_{IR} = \varepsilon \sigma T_1^4 = \frac{1-\alpha}{4} \Phi_S + F$$

En l'absence de forçage radiatif:

$$\Phi_{IR} = \varepsilon \sigma T_0^4 = \frac{1-\alpha}{4} \Phi_S$$

Si on différencie cette dernière expression:

$$\frac{d\Phi_{IR}}{(1-\alpha)\Phi_S} = 4\frac{dT}{T} \xrightarrow{\text{1er ordre}} \frac{dF}{(1-\alpha)\Phi_S} = 4\frac{dT}{T_0}$$

Introduction

Forçage lié à l'effet de serre cumulé

Bilan énergétique de la Terre

En présence de forçage radiatif:

Forçage radiatif positif négatif

 $\Phi_{IR} = \varepsilon \sigma T_1^4 = \frac{1-\alpha}{4} \Phi_S + F$

Perspectives

En l'absence de forçage radiatif:

$$\Phi_{IR} = \varepsilon \sigma T_0^4 = \frac{1-\alpha}{4} \Phi_S$$

On en déduit une approximation du réchauffement planétaire depuis le début de l'ère industrielle:

$$\Delta T = \frac{F}{(1-\alpha)\Phi_S}T_0$$

Introduction

Forçage lié à l'effet de serre cumulé

Bilan énergétique de la Terre

Application numérique:

approximation du réchauffement planétaire entre 1750 et 2000

Forçage radiatif positif négatif

$$\Delta T = \frac{F}{(1-\alpha)\Phi_S}T_0$$

Perspectives

avec $F = 2,43 \text{ W/m}^2$ (source: GIEC)

$$\Delta T \approx 0.7 K$$

ce qui l'ordre de grandeur des variations de températures moyennes estimées.

Introduction

Forçage lié à l'effet de serre cumulé

Bilan énergétique de la Terre

Forçage radiatif positif négatif

Application numérique:

approximation de l'excès d'énergie accumulé entre 1750 et 2000

$$\Delta E = 4\pi R^2 F$$

Perspectives

avec $F = 2,43 \text{ W/m}^2$ (source: GIEC)

$$\Delta E \approx 86.10^4 Mtep$$

soit 86 fois la consommation énergétique annuelle actuelle.

Le forçage radiatif constitue une msure de l'excès d'énergie mobilisable grâce à l'effet de serre

Introduction

Forçage lié à l'utilisation des ENR

Bilan énergétique de la Terre

Forçage négatif: une solution est de faire diminuer E_S

Forçage radiatif positif négatif

$$\Delta E = E_S - E_{IR}$$

Perspectives

Faisabilité:

- L'énergie solaire reçue à la surface de la Terre dépend de α une augmentation de la concentration en poussières et aérosols peut entraîner un refroidissement planétaire;
- 2. La capture de l'énergie solaire pour les besoins humains est autant d'énergie qui ne chauffe par la Terre.

En 1ère approximation, on va supposer que toutes les ENR prélèvent à la source l'énergie solaire incidente, afin de quantifier le forçage négatif dû à l'utilisation des ENR.

Introduction

Forçage lié à l'utilisation des ENR

Bilan énergétique de la Terre

Forçage négatif: on note F_{ENR} le forçage négatif associé aux ENR (rapporté à la surface totale de la Terre)

Forçage radiatif positif négatif

$$E_S = \pi R^2 [(1-\alpha)\Phi_S - 4F_{ENR}]$$

Perspectives

Ainsi, en présence des forçages négatif et positif, le nouveau bilan s'écrit:

$$\Phi_{IR} = \varepsilon \sigma T_2^4 = \frac{1-\alpha}{4} \Phi_S + (F - F_{ENR})$$

De même, la variation de température de la Terre donne:

$$\Delta T = \frac{(F - F_{ENR})}{(1 - \alpha)\Phi_{S}} T_{0}$$

Introduction

Forçage lié à l'utilisation des ENR

Bilan énergétique de la Terre

Forçage négatif: on note F_{ENR} le forçage négatif associé aux ENR (rapporté à la surface totale de la Terre)

Forçage radiatif positif négatif

$$\Delta T = \frac{(F - F_{ENR})}{(1 - \alpha)\Phi_{S}} T_{0}$$

Perspectives

On en déduit qu'un forçage radiatif négatif peut annuler le réchauffement planétaire:

$$F = F_{ENR}$$

Avec $F \approx F_{ENR} \approx 2,43 \, W \, / \, m^2$ et R=6 000 km, le forçage radiatif négatif correspond à une énergie:

 $4\pi R^2 F_{ENR} \times 365 \times 24 \approx 96.10^{11} MWh/an = 82.10^4 Mtep$

Introduction

Forçage lié à l'utilisation des ENR

Bilan énergétique de la Terre

Forçage radiatif positif négatif

Forçage négatif:

Avec $\overline{F} \approx \overline{F}_{ENR} \approx 2.43 \, W \, / \, m^2$ et R=6 000 km, le forçage radiatif négatif correspond à une énergie:

 $4\pi R^2 F_{ENR} x 365 x 24 \approx 96.10^{11} MWh/an = 82.10^4 Mtep$

Perspectives

à comparer avec la consommation annuelle d'énergie primaire de 10⁴ Mtep, ce qui correspond à 1/75^e du forçage radiatif négatif nécessaire pour compenser annuellement l'effet de serre cumulé.

- Envisager l'utilisation des ENR pour compenser l'effet cumulé de l'effet de serre semble illusoire.
- Envisager l'utilisation des ENR pour compenser l'effet de serre additionnel associé aux émissions annuelles actuelles apparaît réaliste.

Perspectives

Introduction

Conditions pour la maîtrise de l'effet de serre

Bilan énergétique de la Terre

Si on considère en conséquence la variation annuelle de température δT due au forçage total $F=\delta F-F_{ENR}$:

Forçage radiatif

$$\delta T = \frac{\delta F - F_{ENR}}{(1 - \alpha)\Phi_S} T_0$$

Perspectives

La condition de maîtrise de l'effet de serre devient alors:

$$\delta F \leq F_{ENR}$$

cas où le forçage radiatif négatf lié à l'utilisation des ENR compense le forçage radiatif positif additionnel dû aux émissions de GES.

Perspectives

Introduction

Conditions pour la maîtrise de l'effet de serre

Bilan énergétique de la Terre

Condition de maîtrise de l'effet de serre additionnel:

$$\delta F \leq F_{ENR}$$

Forçage radiatif

Perspectives

Afin d'évaluer δF , on peut avoir recours à la formule recommandée par le GIEC:

$$\delta F = 4.37 \frac{\ln \frac{C(t)}{C_0}}{\ln 2} \approx \frac{\delta C}{C_0} \times 6.3 \, W / m^2$$

où C(t) est la concentration en CO_2 à l'instant t considéré et C_0 la concentration pré-industrielle.

Actuellement, on estime $\delta F=2.8$ ppm/an, soit:

$$\delta F \approx 0.06 \, W \, / \, m^2$$

Perspectives

Introduction

Conditions pour la maîtrise de l'effet de serre

Bilan énergétique de la Terre

Condition de maîtrise de l'effet de serre additionnel:

 $\delta F \approx 0.06 \, W \, / \, m^2$

Forçage radiatif

Perspectives

On en déduit la consommation d'énergie annuelle E_{ENR} nécessaire pour contrebalancer le forçage radiatif positif:

$$E_{ENR} \ge 4\pi R^2 \delta F \times 365 \times 24 \approx 2.10^4 Mtep$$

à comparer avec la consommation annuelle d'énergie primaire de 10⁴ Mtep

- l'utilisation extensive des ENR ne peut à elle seule contrebalancer les émissions de GES
- l'utilisation extensive des ENR peut contribuer à contrebalancer de façon non-négligeable les émissions de GES